

Guide to Adobe Captivate
Advanced Actions

How to take your Captivate e-learning to the next level

www.infosemant ics.com.au

www.infosemantics.com.au

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Foreword

Copyright statement
© 2013-2014 by Rod Ward, Infosemantics Pty Ltd. ALL RIGHTS RESERVED

info@infosemantics.com.au

This book contains material protected under International and Federal Copyright Laws and
Treaties. Any unauthorized reprint or use of this material is prohibited. No part of this book may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system without express written
permission from the author / publisher, or as part of a multi-user license.

Multi-user licensing for this e-book
Most likely you have purchased this e-book for your own use. As stipulated in the copyright statement
above, the licensed purchaser of this e-book is not permitted to distribute this book to other parties.

However, if you have purchased this publication as part of a multi-user license deal, then you are
allowed to provide one copy of this document to each of the licensed end-users, but you must not
exceed the maximum allowed number of licenses.

For example, if you purchase a three-user (3x-user) license, then you are allowed to distribute three
copies of the document to end users, but no more. (Licensing options are available for single, 3x, 5x,
10x, 25x, and unlimited users.)

About the author – Rod Ward

I work as a contract Technical Author and E-Learning Developer
for medium-large companies in Australia. In the course of my
career I’ve used many different e-learning authoring tools, including
every version of Captivate since its initial release by Macromedia
around 2004. Over many years of professional use, I developed an
intimate knowledge of how Captivate work…and more importantly
for you…why it sometimes doesn’t work as expected.

When Cp4 introduced the ability to build custom ‘widgets’, my
company Infosemantics Pty Ltd started creating and selling our own
range of ActionScript 3 widgets to extend the capabilities of
Captivate as an e-learning authoring tool. Developing widgets
allowed us even greater insight into the inner workings of Captivate.
At our website (www.infosemantics.com.au) the information is
almost entirely dedicated to assisting e-learning authors using
Adobe Captivate and other related e-learning authoring tools.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 2 of 195 Date of Issue: 11 December 2013

mailto:info@infosemantics.com.au
http://en.wikipedia.org/wiki/Adobe_Captivate
http://www.infosemantics.com.au/
http://www.infosemantics.com.au/adobe-captivate-widgets
http://www.infosemantics.com.au/adobe-captivate-widgets

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Table of Contents
Foreword 2

Copyright statement ... 2
About the author – Rod Ward ... 2

Is this book for you? 6
Prerequisites ... 6
What areas does this book cover? ... 6
Other questions you may have about this book ... 6

About ‘Programming’ E-learning with Captivate 8
Why you need a production process ... 8
About Advanced Actions ... 8

Can advanced actions really be called ‘programming’? .. 9
What you CAN do with advanced actions ... 10
What you CANNOT do with advanced actions .. 10

What if I want to go beyond the limitations? .. 11

Introduction to Captivate Variables 13
Captivate variable types .. 13
Create user variables .. 14

Naming your user variables .. 15
About variable data typing .. 17
Editing user variables ... 17
Removing user variables ... 17
Tracing variable usage in Cp7.1 ... 18

Displaying variables on slides at run-time ... 19
How to display project information .. 19
Overcoming dynamic text formatting issues .. 22

Boolean variables .. 23
Migrating variables from one project to another .. 23

Understanding Captivate’s Run-time Events 24
Slide events .. 24
Interactive object events ... 27

Run-time events offered by interactive objects ... 29
Rollover slidelet events .. 30
Drag and drop events .. 30

How to decide which objects and events to use ... 31
Event scenarios ... 31

What ‘infinite attempts’ really means ... 34

Using Single Actions 36
Executable actions ... 36

Why are actions sometimes disabled or missing from the actions list? .. 45
About Expressions ... 46

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 3 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Using Standard Actions 48

Create a standard action .. 48
A key difference between single and standard actions .. 50
A closer look at the Advanced Actions dialog ... 51
Editing Variables from within the Advanced Actions dialog ... 54

Using Conditional Actions 55
Why I use conditional actions and not standard actions .. 55
Creating conditional actions .. 55

About decision blocks ... 56
Order of run-time decision block execution ... 59

About IF > THEN > ELSE ... 59
About condition statements .. 60
Stacking up multiple AND / OR condition statements .. 62

Completing a conditional action ... 64
Adding multiple decision blocks .. 65

Preview a conditional action .. 65

Shared Actions 67
Replicating actions and variables across projects .. 67
Create a new shared action ... 68
Export shared actions ... 70
Import shared actions to a different project ... 71

How to import shared actions from a shared Library ... 72
Create new advanced actions from a shared action .. 72
Executing shared actions directly .. 74
The long list of shared action gotchas .. 75

Recommendations about using shared actions .. 77
How to copy and paste actions across projects .. 77

Debugging Advanced Actions 80
Setting up a debugging environment .. 80

How to set up a DEBUG slide in Cp5 or 5.5 ... 80
How to set up a DEBUG slide for Cp6 or Cp7 ... 82

General debugging tips .. 84
Standard action does not release the playhead .. 84
Interactive objects do not work in published output .. 85
Actions revert to Continue or Go to Next Slide .. 87

Capturing User Input 89
Make something clickable .. 89

Using click boxes ... 89
Using buttons .. 91
Using Smart Shape buttons .. 92
Using Widgets .. 93

Responding to mouse rollover events ... 94
Capturing text input .. 95

Text-entry boxes (TEBs) .. 95

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 4 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

TEB validation .. 97

Practice Exercises 99
General exercises .. 99

Create a dummy condition statement ... 99
Creating toggle actions... 101

Single toggle action (Captivate 7.0.1 or above) .. 101
Toggle action from a standard action (Captivate 7.0.1 or above) ... 102
Toggle using a standard action Expression .. 103
Toggle using a conditional action ... 104
Toggle the visibility of an image .. 105
Toggle between two different images ... 108
Cycle through an array of objects .. 111
Dynamically change the text in a button .. 114

Dynamic navigation ... 117
Create a menu slide ... 117
Set up dynamic feedback on menu slides .. 119
Hide or lock navigation until sections of a module have been viewed ... 123
Advanced dynamic feedback for menu slides .. 128
Rewind back to the beginning of a slide ... 140

Capturing and validating user data ... 144
Capture user data using TEBs... 144
Use a NULL variable to validate for empty TEB fields ... 147
Highlight data entry fields containing invalid data .. 150
Validate data involving multiple correct answers .. 153
Standardize message text in user variables ... 158
Concatenate variable values ... 160

Getting further with dates ... 164
Usability issues with confusing short date formats ... 164
System variables used for constructing dates ... 164
Show the duration of a module in minutes .. 165
Set up your own custom date format variables ... 168

Suggested Extra Resources 175
Ask me! .. 175
Forums ... 175

Adobe Captivate User Forums .. 175
Captivate on LinkedIn .. 175
Captivate on Facebook ... 175

Adobe support .. 175
Tutorials you can view .. 176

Appendix: Reserved keywords 177
Appendix: Keystroke Shortcuts 179
Appendix: Captivate System Variables 186

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 5 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Is this book for you?
Well that depends…Most publications about Adobe Captivate (Cp for short) are aimed at newbie
users and therefore only explain the basic techniques that you can also usually find out by just
reading the online Help files or browsing free resources on the internet. If that’s what you were
expecting here then I need to tell you this e-book is different.

Prerequisites
This book assumes you’re not a Captivate newbie; a beginner with no knowledge of the software.
You should already know most of the basic techniques required to create an Cp e-learning course.

For example, you should already be able to:

 Create and edit project files;

 Add, edit, and delete slides as well as assign master slides;

 Insert all types of standard objects (captions, highlight boxes, images, rollover captions,
rollover images) or interactive objects (buttons, click boxes, Smart Shapes, text-entry
boxes) to your slides and set their properties;

 Record screen captures to create software tutorials;

 Record and edit voiceover audio (with closed captioning if necessary);

 Create interactive quizzes using Captivate’s standard quiz slide types;

 Publish your content for different output formats (SWF, PDF, HTML5, EXE); and

 Configure your output to integrate with a Learning Management System (LMS).

So what’s left? Well, this book is one of a series designed by Infosemantics for Captivate authors
wanting to take their skills to the next level and learn some of the specialized techniques that only
usually come from spending many years as a professional e-learning developer.

What areas does this book cover?
Specifically, this book explains how to add interactivity, personalization or customize your e-learning
content using variables, simple actions, standard actions, and conditional actions.

I approach each topic assuming you have zero knowledge of advanced actions. But although this
book starts out easy, I should warn you that it gets progressively deeper and more technical. So if
you’re only interested in doing simple stuff with Adobe Captivate, stop reading now, before you get
hooked on all the power that lies just under the surface of this amazing software tool. Once you enter
the intoxicating world of advanced actions, there’s no turning back!

Other questions you may have about this book
You may have one or more of the following queries, so let’s get them out of the way right now.

Which versions of Captivate does this e-book apply to?
The information in this publication applies to all versions of Captivate from Cp5 onward but example
screenshots will usually be from Cp7. Where a technique is not possible with a particular Cp version
(eg because a required feature only came with later versions) I will point this out in the text. There’s
often a workaround that may enable you to still achieve similar results.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 6 of 195 Date of Issue: 11 December 2013

http://www.infosemantics.com.au/

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Does this apply to PC only or can MAC users still benefit?
In principle all of the advice in this e-book should apply equally to either PC or MAC. Cp6 was the first
version able to run natively on MAC OS. However, since I only work with PCs, I’m unable to verify all
solutions work flawlessly on MACs. So, if you’re a MAC user, feel free to inform me about any errors
or omissions, and I’ll include that information in future updates of this e-book.

What's the best way to use this information?
Don’t try to read this book like a novel. It’s too technical (and it has no plot). I suggest you first read
through the Table of Contents and get a feel for the high-level topics. The initial paragraphs of each
chapter give an overview of the content. So a first pass at the book might be to read these.

After that, go back to the beginning and work your way through the chapters from beginning to end.
Don’t skip the early chapters that explain foundational techniques about using variables and
advanced actions. I’ve structured the chapters so that they get progressively more difficult and
complex. Many examples or projects described in later chapters depend heavily on your ability to
perform tasks explained in earlier chapters. Where something you need to do would require you to
have read something else first, you’ll find internal hyper-links to jump back to the relevant part.

Can I use a keyword search?
Yes. Just hit Ctrl + F to open the search field in the Acrobat window. The arrows under the Find field
will take you to the Previous and Next occurrences of your search keyword in the content.

Will there be free updates for this e-book after my initial purchase?
That’s my intention. But I can’t promise how often. To download the latest e-book version at any time,
log into the Infosemantics website with the username and password you set up when you made the
original purchase. Then go to My Account > Files and click the download link found there.

Can I email you about a specific Captivate question I have?
Yes! If you purchased this book, you can ask questions, but there’s one condition…

...before sending email, search this e-book for the answer FIRST!
Please don’t be lazy and expect me to design and create your solutions for you. If the answer would
require too much of my time to work out, and I’m not able to provide the solution free of charge, you
have the option of purchasing some consulting time so that I can come up with a solution and send
you files to use or study. (I have to make a living too you know.)

Can I send feedback about this book?
Please do! Send email to: info@infosemantics.com.au for any of the following reasons:

 If you find this book useful, I’d like to hear why or how it helped you.

 If you find a mistake or error, I’d DEFINITELY like to know about that so that I can fix it!

 If you think there’s something I missed out that should be included in future versions.

 If you would like to see e-books about other areas of developing e-learning with Adobe
Captivate, I’d like to hear your ideas too.

Go for it!

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 7 of 195 Date of Issue: 11 December 2013

http://www.infosemantics.com.au/
mailto:info@infosemantics.com.au

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

About ‘Programming’ E-learning with Captivate
This chapter sets the limits of what you can reasonably expect to achieve when working with
Captivate’s advanced actions ‘programming’ environment. It lists some of the creative
possibilities, but also candidly discusses some of the limitations you need to be aware of.

Let me start this discussion by pointing out something to which most Captivate authors never give
much thought, and that is the need for some kind of ordered process when developing e-learning.

Why you need a production process
When you create an e-learning module you’re really creating a piece of software. But, just as with
developing any software application, your e-learning needs to go through a process that helps to
avoid chaotic decisions, eliminate errors, and reduce wasted effort.

Your process might include phases such as the following well-known ADDIE methodology:

 Analysis – where you work out what it is you need to do and how you should approach it;

 Design – including instructional design, interaction design, and technical design to solve
problems and deliver objectives;

 Development – where you execute the design, then perform rigorous testing and
debugging until everything reliably works as expected;

 Implementation – where content is finally deployed (often to a Learning Management
System or LMS for short).

 Evaluation – where outcomes or results of your project are examined and decisions are
made for possible future iterations of the process.

This book doesn’t delve much into the analysis, implementation, or evaluation phases of an e-
learning development workflow (those will be covered in other e-books). But we do discuss a lot about
technicalities encountered in the middle sections of the process where you design, develop and
debug your customized interactivity.

The reason I’m pointing out the wisdom of following some kind of design and development process is
that I don’t want you to be like a lot of Cp users that mistakenly think developing e-learning is all about
adding ‘bells and whistles’ to impress the audience. The kind of enhancements to interactivity that
you’ll be capable of including in your projects once you master variables and advanced actions
(hopefully as a result of studying this book) would certainly impress many clients. However, there’s
already too much e-learning in the world that was designed to impress rather than to teach.

So while I certainly hope you get excited about the creative possibilities we’ll be demonstrating in this
e-book, I also want to encourage restraint in how you implement them. There should always be an
instructional design objective underpinning any feature you include in your e-learning.

Rule #1: Just because you CAN do something, doesn’t mean you SHOULD.

About Advanced Actions
Wanting to open up more creative possibilities for e-learning developers, the architects of Captivate
kindly provided a mechanism allowing non-programmers to customize interactivity of their e-learning
content. This all comes under an umbrella term of “Advanced Actions”. It’s really just a simplified

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 8 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

method of scripting to customize how Cp e-learning output works at runtime.

For me personally, advanced actions are THE killer feature of Captivate that make it my go-to tool for
creating custom interactivity in e-learning courses. Of course Captivate is by no means the first or
only rapid e-learning authoring tool to have this capability. In fact most (if not all) other tools now offer
some form of support for scripting. As a professional e-learning developer, I also have other rapid e-
learning authoring applications in my tool-kit that enable some level of scripting. But, for my money,
Captivate just seems to take things that little bit further.

Captivate offers four different ways to execute actions and uses the broad term Advanced Actions to
encompass them as a whole. Here’s a quick summary of what they are and how they differ from one
another:

Single actions
Adobe just calls these ‘actions’ in the help files, but I prefer to use the term ‘single actions’ because it
better describes how they differ from the other types we discuss below. These are the actions you can
assign directly to any run-time event via the Properties tab > Actions accordion. Their limitation is
that they only allow you to execute one action per event (hence the reason for the name). If you need
to execute multiple actions from a single event, then you need one of the next action types.

Another limitation of single actions is that you have to set them up each and every time. You cannot
save and reuse them as you can with the ones we discuss next.

Standard actions
These are re-usable actions you create via the Project > Advanced Actions dialog (or SHIFT + F9).
They allow you to execute one or more single actions in a sequence. After creating a standard
action you need to trigger (execute) it using any one of Captivate’s dozen or more run-time events.

Conditional actions
I love conditional actions! They are the unsung misunderstood work-horses of advanced actions. Like
standard actions they also allow you to execute any number of single actions from a single run-
time event, but with the bonus of being able to specify multiple IF>THEN>ELSE conditions that
determine whether or not groups of actions get executed at all. This then allows your content to
respond to user interaction and make decisions on-the-fly. And this is where Captivate gets really
exciting!

Shared actions
Cp7 introduced a new type of action called Shared Actions. In theory they allow standard and
conditional actions to be saved in a stripped-down ‘parameterized’ format that can then be exported
from one project file and imported into another. In practice they tend to be more trouble than they are
worth (in my opinion). Unless the actions are very complex, in the vast majority of cases it’s going to
be quicker to set them up again from scratch in the target project.

Other than making actions portable across projects, shared actions don’t really allow you to do
anything more than the other action types. They’re something to watch for the future but I wouldn’t get
too excited about them in their present form. There’s a special chapter dedicated to Shared Actions
later in this e-book.

Can advanced actions really be called ‘programming’?
Strictly speaking, Cp’s advanced actions would not qualify as ‘programming’ if compared to languages
such as JavaScript, ActionScript, Java or C++, etc. Many of the established concepts that are
regarded as essential to modern object-oriented programming are missing completely from advanced

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 9 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

actions. So it’s probably more accurate to refer to what we’re doing here as ‘scripting’.

When you publish your project, Captivate converts your variables and advanced actions into
programming code that is executed at runtime. For SWF output, the code will be ActionScript. If the
output is HTML5, then your code will be JavaScript and CSS. Either way, it’s likely to be far more
complex code than you could have written by yourself (unless you’re already a talented programmer).

Cp’s simplified (and somewhat clunky) advanced actions interface shields you from the dizzying
complexity that hides just ‘under the hood’ of the project CPTX file. And, although there are lots of
limitations in what you can do, some very sophisticated results are still achievable within those limits.

What you CAN do with advanced actions
So what level of sophistication are we talking about here? Well consider the following examples:

 Create your own custom User Variables and display them in your content at runtime;

 Use dozens of System Variables that Captivate exposes for you;

 Use run-time events to execute Simple Actions chosen from a menu;

 Define a series of actions to be performed in sequence, and save this as a Standard Action
that can be reused and executed by events on any number of slides;

 Create IF – THEN – ELSE conditional actions that determine whether or not certain actions
(or sets of actions) are executed;

 Create dynamic content that responds to user input;

 Manipulate numeric variable values to calculate results or scores;

 Hide or show objects at runtime;

 Change the appearance of objects to indicate state;

 Concatenate strings to assemble sentences or create your own custom date formats from
component system variables;

 Create dynamic navigation menus that indicate which sections a user has completed;

 Simulate navigation components such as tabs, drop-down or fly-out menus;

 Store user details in custom variables and then use these later in the content;

 Create custom quiz interactions;

 Share actions between projects (only in Cp7 and later versions).

The list of what you can do is long and growing as clever Cp authors come up with new ways to bend
Captivate to their will. We will be demonstrating how to do all of the above later in this e-book.

What you CANNOT do with advanced actions
So what are some of the limitations mentioned above? Here are just a few examples:

Arrays
Each Cp variable can only store one value. This means you cannot create a variable as an indexed
array containing multiple values. Additionally, you cannot assign an object as the value of a variable.

Functions
As mentioned above, you can define a series of actions to be performed in sequence, and save this
as a Standard Action or Conditional Action to be triggered by screen events or user interaction. But

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 10 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

this is not really the same as being able to program with reusable functions. For example, you cannot
call one advanced action from another advanced action.

Loops
If you need to do something repetitively in software, you will usually end up using a loop. This is a
logic structure where the program asks a question, and if the answer requires an action, then it is
performed and the original question is asked again and again until the assigned action is no longer
required. Captivate has Conditional Actions that allow you to ask questions (IF conditions) and THEN
execute actions, ELSE do something else. You can fake a simple loop by create multiple conditional
clauses that do essentially the same thing over and over again to roughly approximate effect of a
loop. But there are no looping action types per se.

Nesting of advanced actions
You cannot build an advanced action inside another advanced action. If you need to have the same
code in more than one action, you have to manually recreate the code in other clauses of the action,
or copy and paste lines one at a time. It gets tedious fast.

No inheritance
This is an important programming concept that allows you to save code when creating new types of
objects by appending or extending existing objects. This just doesn’t exist in advanced actions. So for
example, you cannot use advanced actions to define a new type of text caption or highlight box. You
cannot extend an existing advanced action. Each must be standalone.

Actions are not reusable across projects
Until Cp7 there was no way to copy actions from one project to another. If you copied and pasted
slides from one project to another, all actions and variables were stripped out. (It was actually a useful
way to fix a project that had become unusable due to corrupted advanced actions.) The only way to
reuse any variables or advanced actions was to build them into your project template and use this
template to spawn all new projects.

Now at last with Cp7 there is a new feature called Shared Actions which we will explore in a later
chapter of this e-book. It’s by no means a perfect solution because in many cases it’s actually quicker
to rebuild the action in the new project than to use a shared action. But at least it does offer some
hope for the future of advanced action reusability.

What if I want to go beyond the limitations?
With such a long list of limitations it’s easy to see why hard-core programmers are unimpressed with
advanced actions. They’re more accustomed to unlimited creative vistas.

On balance, most Captivate users are NOT programmers. They’ve usually been thrust into the world
of e-learning authoring because they needed to create or deliver training materials. Advanced actions
are really designed for non-programmers.

But that doesn’t mean serious programmers are left out in the cold. For the hard-core types, there are
two main options, ActionScript 3 and JavaScript.

ActionScript 3
This is the full-on object-oriented programming language from Captivate’s heavy-duty cousin, Flash.
You can use AS3 to create static, interactive, or question widgets that can extend the capabilities of
Cp SWF output to do almost anything Flash offers. If you are already an ActionScript developer

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 11 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

interested in learning how to develop AS3 widgets for Captivate, I recommend you check out Tristan
Ward’s WidgetFactory API and his WidgetKing blog.

But remember that HTML5 devices (e.g. iPads and phones) do not usually support Flash content. So,
since HTML5 is gaining ground in e-learning, you may want to consider the other alternative
programming language that Cp will also accept…JavaScript.

JavaScript
Sometimes derided by programmers as “just a scripting language”, JavaScript is actually based on
the same international ECMAScript standard as ActionScript and many other languages. It’s a loosely
typed object-oriented language that is now the most popular programming language in the world,
thanks in part due to the recent rise in popularity of HTML5.

If by some chance you’ve decided to create widgets for Captivate that will work in both SWF as well
as HTML5, then you will need to become adept at both ActionScript and JavaScript. Both of these
languages are beyond the scope of this e-book, however, there are many books and online resources
available to learn the languages.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 12 of 195 Date of Issue: 11 December 2013

http://www.infosemantics.com.au/widgetfactory/info
http://www.infosemantics.com.au/widgetking/
http://en.wikipedia.org/wiki/ECMAScript

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Introduction to Captivate Variables
This chapter explains Captivate variables, including what they are, the different types of
variables, how to insert them, name them, and use them to display information in a project at
run-time. You need to have a good understanding of variables because they are essential
components of the more complex interactions you’ll be creating later in this e-book.

All programming languages use variables to temporarily store values that can then be used by other
parts of an application. Some programmers like to think of variables as being ‘containers’ or ‘buckets’
into which you place values such as numbers or strings of letters. However, technically variables
work more like pointers or identifiers that link to or reference their values.

You don’t really need to worry too much about the technical aspects. All you need to know is that
variables store values and you can usually change those values using advanced actions. (The
exceptions are READ-ONLY system variables.) In Captivate’s terminology, you are said to ‘assign’
the value of a variable when you use an action to change it.

Captivate variable types
Captivate has a two main types of variables and you need to become familiar with both of them in
order to create some of the advanced interactivity we describe later in this book.

System variables
These variables come pre-defined with Captivate. You don’t need to create them. They allow you to
monitor or modify what the system (i.e. your e-learning module) is doing at run-time. The Appendix at
the end of this e-book provides a comprehensive list of all system variables available with each
Captivate version. (Product icons are used to indicate which Cp versions offer which system
variables.) I recommend you study this list of system variables and think about the creative
possibilities they offer for creating more dynamic navigation, quizzing, and interactivity.

Of the 70 or so system variables available in Cp7, only a dozen or so can be assigned values via
advanced actions. The rest are READ-ONLY at run-time (as indicated in the appendix list mentioned
above). Additionally, you cannot change any names of system variables, and since all variable
names must be unique, you cannot use the name assigned for a system variable as the name of a
user variable.

User variables
These are variables that you, the Cp author, can create and name as you choose...as long as you
don’t contravene certain variable naming rules. Furthermore, any name you assign to a user variable
must not conflict with Captivate’s internal functions, exposed system variables, or other hidden
variables.

Hidden variables
There are of course hundreds of other hidden variables that Captivate uses internally, but you might
as well forget about trying to use these in your e-learning. From time to time some Cp developer will
stumble across one of these by accident, usually as a result of accidentally naming a user variable
with one of the 150 or so reserved keywords. The reason Adobe doesn’t publish lists of these hidden
variables is that it might encourage technically savvy e-learning developers to try using them and then
inevitably break some essential run-time function, or even corrupt their project file entirely.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 13 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Create user variables
Fortunately, one of the easiest tasks you’ll ever perform in Captivate is to create a new user variable,
and if you intend to be creating complex interactivity, you’ll be creating lots of variables!

1. From the Project main menu, select the Variables option.

2. When the Variables dialog opens, click the Add New button. (The screen below is from

Cp7.1, but except for the extra Usage button all versions since Cp5 are much the same.)

3. Type the name of your user variable, enter a default value (if applicable) and provide a

description of its purpose, then click the Save button.

Your newly-created variable will now be listed in the lower part of the Variables dialog. Variables
are listed in alphabetical order, with only two exceptions. Cp7 users will find two new user
variables called cpQuizInfoStudentID (used for Internal Server Reporting) and
cpQuizInfoStudentName (used for capturing the student name variable from a learning
management system). For some reason, Adobe has opted to have these variables always sort to
the bottom of the list of variables.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 14 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Naming your user variables
Naming Cp user variables is a bit like naming your children. It’s worth taking some time to consider
the ramifications of the moniker you assign, because once it goes on the birth certificate and the ink is
dry it can be a major issue to change at a later date.

Similarly, whenever you create a new user variable you should pause and think carefully about the
name you give it because once you assign a name to a user variable and save the new variable from
then on you cannot change the name. You’re stuck with it.

If you later decide the name was a mistake, your only option is to create another variable with the
correct name and then go through all the places (captions, advanced actions, etc) where you used the
previous variable and reassign them to the new one. That’s more trouble than you want, believe me.

So here are some basic rules to follow when naming user variables:

You cannot begin a variable name with a number or underscore character
If you try to do so, Captivate will warn you that this is not allowed (as shown below).

Some Cp authors like to begin all user variables with the letters V or v_ so that variables can more
easily be identified in lists. Just remember that variables are sorted alphabetically in the dialog list.

NEVER use reserved keywords
There are around 150 ActionScript keywords that Captivate reserves for its own internal use and
you must never assign any of these as the name of a user variable.

If you don’t believe me, check out this page on the Captivate help system. To save you looking it up,
I’ve copied the list of reserved keywords here in a special appendix at the end of this book.

I recommend you print out this list and keep it pinned up somewhere near your desk (if your office
clean-desk policy doesn’t prohibit such practicalities) to avoid the angst that often bedevils Cp authors
that have inadvertently transgressed into reserved keyword territory.

Although in theory Cp should detect and prevent you from using reserved keywords as variable
names, it doesn’t always seem to do this flawlessly. If you should inadvertently happen to fall into this
trap, it could prevent you from being able to publish your project, throw error messages, or in a worst-
case scenario, corrupt your project and render it unusable.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 15 of 195 Date of Issue: 11 December 2013

http://help.adobe.com/en_US/captivate/cp/using/WSDF6E7000-1121-4808-B61B-CCAB6A554AD3.html

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Names must be unique
All variable names must be unique across any single CPTX project file. You can however use the
same variable names in different modules of a course. In fact, you may need to do this when
persisting variable values from one module to another. (More about this later…)

UseCamelCaseNames
CamelCase is a naming convention often used by software programmers. Words in the name all start
with a capital letter, thus making the capital letters stand out like the humps on a camel. It’s not
mandatory, but it is popular with professional programmers because it makes the words in a variable
name easier to read at a glance and understand. Look at the example below and ask yourself which
of the names is easier to read quickly:

 myreallylonginvolvedvariablename

 MyReallyLongInvolvedVariableName

Names should be intuitive
Once you really get going with Cp interactivity it’s quite likely you’ll be creating dozens, scores, or
even hundreds of variables in a single CPTX project file. (My personal record is just under 350
variables in a single module.) So it’s wise to give some careful thought to how you might structure
your variable names so that they will still make sense several years from now when you (or someone
else) might need to
come back and edit
or update your
course. It’s wise to
avoid names that
will only make sense
to you and nobody
else.

Another suggestion
you might follow is
to use a prefix on
your names that
tells you what
overall part of the
interaction each
variable belongs to.

For example, if you
have a number of variables that are all used in the course navigation, you might begin all of their
names with the word Nav_ as follows:

 Nav_NextButtonState

 Nav_BackButtonState

 Nav_TOCItem

If you have a number of variables involved in a specific quiz interaction, then you may use a prefix
such as Quiz_ or similar. Take a look at the screenshot below of part of the Variables dialog in one
of my own projects. Can you tell from the names what each variable might be used for?

Whatever naming convention you follow, the point is that each variable name should be intuitive
enough to make its purpose obvious without the next developer being required to laboriously trawl
through the Variables dialog looking for descriptions. And while we’re on the subject…

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 16 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Always add descriptions
Even though you go to great lengths to make your variable names self-explanatory, it’s still good to
include text in the Description field to document what the variable will be doing or where it might be
used. For example, if a particular variable will be supplying essential data to one or more advanced
actions or conditional advanced actions, then you might list them in the description.

About variable data typing
In most programming languages variables are ‘typed’, meaning that they are deliberately restricted to
accept and store only certain types of values such as Booleans (0 or 1, true or false, yes or no),
integers (numbers), or strings (text).

By contrast, Cp user variables are not typed. They’ll accept almost any numeric or text value you want
to throw at them. (As mentioned before, system variables are mostly READ-ONLY so their data is
usually also of a fixed type.)

Although on the surface this freedom to store any type of value in a variable might seem like a good
thing, it can also sometimes get you into trouble. For example, you may end up inadvertently trying to
perform math functions on a string of text, or concatenating a number, which of course won’t work.

So this means the onus is on you, the Cp developer, to keep track of what type of data your variables
should hold. And that’s a lot easier to do if you keep your documentation and descriptions up to date.

Editing user variables
Once you’ve created a number of user variables from time to time you’ll need to change something.
Since you cannot change the variable’s name, your editing options are limited to altering the default
value, description text, or removing/deleting the variable altogether.

1. Open the Variables dialog and select the variable you want to change. (The Update button
is initially disabled until you make some detectable change to the variable properties.)

2. Edit the Value or Description fields as needed and then click the Update button.

(After making the change, the Update button again becomes inactive)

Removing user variables
As you develop a project you may find that some of the variables you create become redundant and
need to be removed (perhaps because you had to create a duplicate variable with a different name).
It’s a good idea to take out the trash by deleting these unwanted variables because they can waste
browser memory and slow down run-time performance.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 17 of 195 Date of Issue: 11 December 2013

http://en.wikipedia.org/wiki/Boolean_data_type

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

The process seems simple enough…but there are some caveats:

1. Open the Variables dialog and select the variable to be deleted.

2. Click the Remove button.

3. Now things get a little more complex. Please note the following caveats about removing

variables:

 You can only remove user variables, not system variables.

 You can remove a variable referenced by a simple action that assigns its value, but this
will result in the action being reset to Continue.

 You can only remove user variables that are NOT currently being used to display
values in screen objects such as text captions or shapes. Additionally, you cannot
remove any variables currently referenced by Single, Standard or Conditional
Actions in your project file. If you try to remove one of these referenced variables,
Captivate will show the following warning message.

Unfortunately, this warning message doesn’t give you any information about which specific
slides or advanced actions use the variable and need to be modified before you can remove
it. In a large project with many slides and actions, this can be like trying to find a needle in a
digital haystack

Tracing variable usage in Cp7.1
The inability to trace where user variables were referenced in a project file was a huge weakness in
Captivate functionality that was finally addressed with the Cp7.0.1 update patch released in mid
November 2013.

The Variables dialog now has a Usage button (similar to the one on the Advanced Actions dialog)
that when clicked will show where the currently selected variable is referenced on any slide in the
project, as well as which specific run-time event is used to execute the action involved.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 18 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

This now makes it extremely easy to do any required project file housekeeping. However, there are
some exceptions. Variables referenced in text-entry boxes, widgets and interactions (which are also
widgets) don’t get taken into account by the Usage dialog. So if you have a lot of widgets or
interactions in your project, you may need to check them manually before starting any round of mass
deletions. If your variable is not used anywhere, you’ll just see a dialog that says: Item is not in use.

Displaying variables on slides at run-time
One of the easiest ways to make use of variables is to display values in text captions, shapes, and
Smart Shape objects on slides at run-time. In the example below I show how this is done by inserting
several display fields into a single text caption.

How to display project information
Let’s imagine your project needs to have the e-learning author’s name and contact information appear
on a slide at run-time. Here’s how you could do that:

1. Create a new blank project and open the File > Project Info… (This is quicker than
navigating to the same dialog location using Edit > Preferences > Project > Information.)

2. Type relevant information into the fields provided.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 19 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

3. On another slide in your project file, insert a text caption and some text to indicate the type

of information it provides.

4. Place your mouse cursor at the point in the text caption where you want to insert the
variable display field.

5. On the Properties tab > Format accordion, click the Insert Variable icon.

6. When the Insert Variable dialog opens, change the Variable Type to System and from the

Variables drop-down list select cpInfoAuthor as the variable.

7. Pay close attention to the default value shown in the Maximum length field. It has gotchas!

 Gotcha # 1: In earlier versions of Cp this field was set to 15 characters by default.
This length is fine if all you are doing is displaying a number, identifier code, or slide
name. But it’s usually too short to display personal names, company names, course
names, etc. In Cp7 the default length has been increased to 50 characters, but you
can change it to specify any length up to about 250 characters. So give careful thought
to how much information you need to display and set the field length accordingly.

 Gotcha # 2: There is a bug in versions prior to Cp7 where if you happen to be inserting
a number of variables one after another, the Maximum Length field randomly reverts
to a value of 0. So be sure to take a moment to check this field before hitting OK.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 20 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

 Gotcha # 3: If you happen to guess wrong about the required number of characters to

allow as the length of the display field, you cannot easily change it. You must delete
the inserted field and re-insert another one to change the display length. So it’s usually
wise to bet a little on the high side to be safe.

8. Once you’re happy with the details of the inserted variable, click the OK button. Your

variable will appear by name, surrounded by double dollar signs (e.g. $$cpInfoAuthor$$).

9. Repeat the last few steps to insert any other variables in the same caption.

10. Publish your project to see how the variables are displayed in the caption.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 21 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Why not just type the variable name with $$ characters on either end?
Yes you can insert a variable into a caption or shape by just typing the variable name
and adding $$ characters at the beginning and end. However, while it may be slightly
faster, the downside to this method it that it doesn’t allow you to set the number of
characters for the maximum display length. It will just assign the default amount, which is
only 15 characters for Cp versions 5 through to 6.1 and 50 characters for Cp7. The 15
character default was far too small, and even 50 characters will sometimes be
insufficient. So, call me a control freak, but I still prefer to insert variables via the dialog
method and set the display length myself.

Overcoming dynamic text formatting issues
When you insert a variable into a caption or shape, don’t be surprised if you need to fiddle around
with the formatting a bit before it all looks right at run-time. These formatting issues are due to the
fact that normal caption text is ‘static text’ (because it doesn’t change at run-time) while variable
display text is ‘dynamic text’ (because it can change depending on the current value of the variable
being displayed). In Captivate’s published output, captions containing static text are actually
converted into images. But since this means the text becomes an image too, this approach would not
allow dynamic text to change on-the-fly at run-time. So, static and dynamic text strings are kept
separate. The result can be certain inconsistencies in visual formatting.

For example, some early versions of Captivate did not allow dynamic text to be indented. If you
applied indenting in Edit mode, the indenting disappeared at runtime. If you added variable text into
the middle of a paragraph of static text in a caption, none of that text would honor the applied
formatting. This often resulted in captions with text unattractively crammed into the top-left corner or
positioned hard against the left side of the caption. There were also notable differences in the
aliasing of the text. For example note the differences in the two run-time captions below from Cp 5.5.

The text in the caption above left is just typed in. The one on the right is displaying text supplied by a
user variable. The workaround for such formatting issues is to place dynamic text inside a transparent
caption positioned on a layer above another caption. This made it appear as if the underlying caption
contained the dynamic text when in fact it was just acting as a background. Fortunately, these issues
have been steadily diminishing with each new version and it’s now quite difficult to tell static and
dynamic text apart as you can see from the Cp7 examples shown below.

 Hopefully one day, in some future Captivate version, there will be no discernible differences at all.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 22 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Boolean variables
One of the most common types of variables that you will need to use when working with advanced
actions is the Boolean variable. This data type was named after George Boole, a mathematician who
developed Boolean Algebra way back in the 1850’s, well before computers were ever thought of.

Unlike most variables that can hold any number of possible numeric or string (text) values, a Boolean
variable can only hold one of two values. These are usually 0 or 1, TRUE or FALSE, YES or NO. A
Boolean variable acts a lot like a light switch. The light is either ON or OFF.

You can set the value of a Boolean variable using the assign action, either as part of a single action,
standard action, or conditional action. You’ll find Boolean variables particularly useful in conditional
actions to store the result of a condition that checks whether something is correct or incorrect.

Migrating variables from one project to another
Captivate has traditionally had no way to move variables or advanced actions from one project file to
another. This deficiency has always been a huge hole in the application’s otherwise fine functionality.

But then Captivate 7.0 added the ability to use shared actions, with ability to export actions from one
project and then import the same actions into another. One less-known feature of shared action
functionality was the fact that all variables referenced by the shared action are migrated along with it
and recreated in the new project file location at the time of import.

With the release of the update patch for Captivate 7.0.1 in mid November 2013 Adobe went one step
further to allow any variables referenced by actions on a copied slide to be added to any project this
slide was pasted into. This certainly helps.

However, there is a catch. If the target project already contains variables of the same, the incoming
variables are renamed with a number appended to the end. You can see the messy end result here
in the chapter about shared actions. So watch out for that issue.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 23 of 195 Date of Issue: 11 December 2013

http://en.wikipedia.org/wiki/George_Boole
http://en.wikipedia.org/wiki/Boolean_algebra
http://helpx.adobe.com/captivate/kb/captivate-7-patch.html

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Understanding Captivate’s Run-time Events
In this chapter we introduce the concept of events. Although you don’t need events in order
to use Captivate variables, you cannot use actions without using events to trigger or
‘execute’ them. So a good understanding of events is essential to mastering advanced
actions. There are only about a dozen events to choose from. But as you read this chapter
you may be surprised at how complex some of event scenarios can become.

Events are points at run-time of an e-learning module where something happens or changes. In the
software programming world, events usually have names beginning with the word On.

For example, look at these events and their meanings:

 OnClick – something got clicked;

 OnMouseOver – the user placed their mouse cursor over something on screen;

 OnMouseOut – the user moved their mouse cursor away from something on screen;

 OnKeyEnter – the user hit a key on the keyboard.

In the software world events are used to call functions, i.e. do stuff. In Captivate, events are used to
execute actions in your published content at run-time, i.e. do stuff.

Captivate’s run-time events have slightly different names to those shown above, but the same general
concepts apply. They usually start with the word On (though there are some exceptions), and the
name of the event gives you some idea about what happened or what changed to ‘register’ the event.

We’ll first consider events exposed by different types of slides and then look at events from objects
present on the slides. Some Cp objects have no events, while others can have several.

Slide events
Master slides are the only Cp slide type that doesn’t offer events to execute actions.

Normal slides
All normal slides have the following two events:

 On Enter – This occurs when the slide enters the timeline at run-time.

 On Exit – This event fires after the slide exits the timeline at run-time. It’s important to note
this fact because it means any actions triggered happen on the next slide, not this one.

These events are clearly visible when you select a slide in the filmstrip and then look at the
Properties tab > Action accordion. The drop down menus beside these events show the currently
selected action each event will execute.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 24 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Avoid using the On Exit event
You may have noted that the example above has no action set for the On Exit event of
this slide. There’s actually good reason for this. The On Exit event is only fired after the
slide reaches the very last frame on its timeline. In many cases this frame is never
reached because your user interacts with some object (e.g. button, playbar, or TOC
item) that navigates them immediately to another slide in the project. This would mean
the On Exit action would never get executed.
So, since you cannot always predict how users will navigate your course, it’s usually
best not to use On Exit for anything critical. If you set the On Exit event to No Action,
the slide will still progress to the next slide when it reaches the end of its timeline.
The most useful slide event of all is always going to be the On Enter event because it
always gets fired for each slide, no matter how the slide was called.

Question slides
Question slides have the following events:

 On Enter – As with normal slides, this event occurs when the question slide enters the
timeline at run-time. Question slides don’t have an On Exit event. If you look on the
question slide’s Properties tab > Action accordion, the On Exit event is disabled.

This is because the On Success and On Last Attempt events actually replace the need for
an On Exit event. The only way you’re supposed to end up leaving a question slide is after
either succeeding or failing to answer it correctly.

 On Success – This occurs when the question is correctly answered by the user.

 On Last Attempt – This occurs when the user has answered the question incorrectly and
has no more attempts available for use.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 25 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

About the Multiple Choice quiz question Advanced Answer Option

While we’re discussing quiz question slides, it’s worth mentioning the Multiple Answer (radio button)
quiz question type has a special trick up its sleeve that gives you yet another event you can use. It’s
called the Advanced Answer Option and it allows you to execute an action based on the specific
answer option a user selects from the radio button array in the quiz question.

This means you could choose to play a sound, show a different feedback text box, assign a value to a
user variable, or execute any number of other actions based on which answer the user selects. What
you do is entirely up to your imagination and creativity.

However, don’t get too excited about the Advanced Answer Option. It is only available with the
Multiple Choice quiz question type and no other. You can of course fake a True/False quiz question
by creating a Multi-choice question with only two answer options. But there is no way to use
advanced answer options with Multi-answer (checkbox) quiz questions.

To get really creative with quiz questions, sometimes you need to create them from scratch yourself.

Quiz Result slides
Like question slides, the Quiz Result slide also has three events, but two of them are a little difficult to
find because technically they are related to the quiz itself and would occur even if the Quiz Result
slide were hidden or not present.

 On Enter – This occurs when the Quiz Result slide enters the timeline at run-time. Like
quiz slides, Quiz Result slides also have the On Exit event disabled.

 If Passing Grade – This event occurs if the user successfully passes the quiz. It’s roughly
equivalent to the On Success action of a quiz question.

 If Failing Grade – This event occurs if the user fails the quiz and has no more attempts
allowed. So it works in much the same way as the On Last Attempt event of a quiz
question.

Like all of the previous slide types, the On Enter event action for a Quiz Result slide is configured
from the Properties tab > Action accordion. But you won’t find anywhere on the Properties or Quiz
Properties tabs to configure actions to be triggered by these other two events, If Passing Grade and
If Failing Grade. So where are they?

Well it turns out you need to go to the Preferences > Quiz > Pass or Fail screen to find them.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 26 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

However, there is something important you need to know about these two quiz events. They are only
capable of triggering actions after the quiz has been evaluated as passed or failed. That means these
events only fire after you click the Continue button on the Quiz Results slide. Or, if the Quiz
Results slide is hidden, they only fire after exiting the final quiz question in the quiz.

Interactive object events
Now let’s look at the events you can use with screen objects, starting with interactive objects. In
Captivate’s world an ‘interactive object’ is defined as any object that can evaluate to a Success or
Failure condition. In Cp you always know when you are dealing with an interactive object because
you will see options on the Properties tab to enable or disable Success and Failure captions.

Here are the main types of interactive objects you will be using to execute advanced actions:

Buttons
Captivate offers four button types to choose from:

 Text buttons – A simple button object with text label.

Transparent buttons – So named because you can set the value of Fill Alpha
down as low as 0% to make them invisible (like click boxes).

But the way, the buttons shown at left are from Cp6 or later versions. Those of
you using Cp5 or 5.5 will still be able to use transparent buttons but will not have
as many formatting options

Image buttons – These are actually composed of three images, one each for
Up, Over, and Down states. The area occupied on screen by the button itself
corresponds to its ‘hit area’. Captivate comes with about 30 image buttons you
can choose from, but you can also create your own with any decent graphics
editing software application.

Smart Shape buttons (Cp6 or later only) – Captivate has had shape objects for
several versions. But Smart Shapes, with the extra option to Use as Button
were only added in Cp6. When used as a button, a Smart Shape becomes a
clickable interactive object with its own hit area.

However, unlike Cp text buttons and image buttons, Smart Shape buttons don’t
have up, over, and down ‘states’ to make their appearance change in response to
user interaction. This is a big limitation that Adobe will hopefully address in a
future version of Cp.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 27 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Click boxes
A click box is effectively an invisible ‘hit area’ that you can place over the top of other objects to make
it appear as if those objects are clickable, when in reality the user is registering a mouse event via the
click box instead.

Text-entry boxes (TEBs for short)
A TEB is essentially an input field that accepts numbers or text strings entered by the user, and then
stores this data in an associated user variable. You need to turn on Validation in order to have the
user input checked against one or more correct answers so as to register Success or Failure events.

TEBs are very versatile and useful interactive objects, but they also have a few extra wrinkles you
need to be aware of. So we’ll be giving them more in-depth attention in a later chapter about
Accepting User Input.

Interactive widgets
These are small pieces of software written in ActionScript 3 and possibly also JavaScript (if designed
to be compatible with HTML5 output). Widgets extend the capabilities of Captivate beyond what it
could do out of the box. But they are hard to pin down and describe because they may potentially be
any kind of interaction the widget designer/developer can imagine and is clever enough to create.
They are classed as interactive objects because they can also evaluate to either a Success or
Failure condition and thereby trigger actions. However, exactly what constitutes success or failure is
really up to the widget developer to decide.

For example, the Infosemantics Event Handler widget allows you to turn any Cp screen object into an
interactive object that can trigger success or failure events when clicked, double-clicked, right-clicked,
when rolled over with the mouse cursor, or when the mouse cursor is moved away. In the case of the
Infosemantics Interactive Drag and Drop widget, a success condition is registered if the user drags
and drops objects on top of their correct matching targets. These are just a couple of examples. If
you want to see more, check out this page on the Infosemantics website.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 28 of 195 Date of Issue: 11 December 2013

http://www.infosemantics.com.au/adobe-captivate-widgets/event-handler-interactive
http://www.infosemantics.com.au/adobe-captivate-widgets/drag-and-drop/interactive
http://www.infosemantics.com.au/adobe-captivate-widgets/drag-and-drop/interactive

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Run-time events offered by interactive objects
All interactive objects have at least two events that can be used to execute actions. These events are
clearly shown if you select an interactive object and then go to the Properties tab > Action
accordion. For example, the screenshot below shows the events available for a button.

On Success

 This event occurs when the object evaluates to a success condition.

 In the case of a button, click box or Smart Shape used as a button, clicking within the
object’s hit area is all that is required to register success.

 For a TEB, if Validation is not turned on, success may simply mean the user has typed
something into the field provided and clicked the Submit button or hit the ENTER key on
their keyboard. However, if Validation is also turned on, then success means the user’s
input was checked and evaluated to be a match to one of the pre-configured correct
answers. (These subtle distinctions are the reason I mentioned before that we need to pay
more attention to TEBs in a later chapter.)

 For an interactive widget, success is whatever the widget developer designed it to be. For
example, if the widget is a drag and drop interaction, then success would be achieved by
dropping objects on their correct targets. With widgets the possibilities are almost endless.

On Last Attempt

This event occurs when the object evaluates to a failure condition AND the user has no more
attempts remaining. Take special note of the last part of that sentence about remaining attempts
because this is an area of confusion for many Cp authors that I explain a little later in this chapter. If
the user still has any more attempts remaining, then as far as Captivate is concerned, they haven’t as
yet failed the interaction, so no failure condition is registered, and there is no usable event.

Here are some examples of failure conditions for different types of objects if the user has flunked their
last allowed attempt:

 For buttons or click box objects, failure means you did not click within the object’s hit area.

 For a text-entry box, failure means the number or text you typed into the field did not match
any one of the specified correct answers.

 For a drag and drop widget, failure means you did not drop objects onto their correct targets.

The On Focus Lost event
Text-entry boxes are something of a special case when it comes to interactive objects. Not only do

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 29 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

they have the usual On Success and On Last Attempt actions, they also offer one more called On
Focus Lost. This event gets registered if the user has entered some text into the text entry field and
then clicks somewhere outside the field, thereby shifting the focus elsewhere on the slide.

On Focus Lost can be a very useful event when capturing user input from a number of TEBs if you
need to know exactly which field the user has just interacted with, or you want to trigger advanced
actions to perform more complex validation of entered data. We discuss this concept more in the
chapter about Capturing User Input, especially the subheading about using TEBs for that purpose.

Rollover slidelet events
Technically-speaking, slidelets are not actually interactive objects because they do not register
success and failure conditions. However, they do have a couple of events that may prove useful:

 On Click – As the name suggests, this event is registered when you click on the slidelet hit

area. This enables slidelets to trigger events in a similar way to click boxes. So you could
use a slidelet to create an interaction where rolling over its hit area displayed information (in
the visible part of the slidelet) and then allow the user to click the area where their mouse is
currently located to jump to another slide for more extensive information.

 On Rollover – This event is the only native rollover event in any native Captivate object that
can be used to trigger actions. Almost all other mouse events are some variation of a click
(left-click, right-click, double-click). My personal preference is to avoid using slidelets for
anything, so I usually resort to Event Handler Widgets for triggering actions on mouse over
events. But if you don’t have these widgets then the slidelet might offer a viable alternative.

Why I don’t recommend using slidelets
Rollover slidelets have been in Captivate now for several versions, but let me be quite candid in
saying that I am definitely NOT a fan of using this particular object to build complex interactivity.
Slidelets seem to have too many inconsistencies and bugs for my liking. I’ve also found that having
any more than one or two on a slide can compromise run-time performance. Additionally, slidelets are
not supported in HTML5 output. So if your target audience is users of mobile computing, slidelets are
not an option.

Drag and drop events
Captivate 6.1 introduced a new feature called Drag and Drop which caused a lot of excitement in the
community. Prior to this enhancement the only way to have true drag and drop interactions was to
buy one of the Infosemantics Drag and Drop widgets. (In fact, these widgets are still the only way that
Cp users on versions 5.0 through to 6.0.1 can use drag and drop.)

One of the great things about Captivate’s new drag and drop capability is that it also gives you some

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 30 of 195 Date of Issue: 11 December 2013

http://www.infosemantics.com.au/adobe-captivate-widgets/event-handler-interactive
http://www.infosemantics.com.au/adobe-captivate-widgets/drag-and-drop/which-adobe-drag-and-drag-and-drop-widget-comparison

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

more events to play with.

On Success

This event is registered when you drop all of the correct objects on their respective targets and the
answer combination is submitted. You might have achieved this by clicking the Submit button
provided, but you can also use the Auto Submit option as well.

On Last Attempt

As with all the other instances where we’ve seen On Last Attempt mentioned, this one is fired when
your participant fails to achieve a success condition and they have no more attempts left. In drag and
drop interactions, this means they haven’t correctly dropped all the right objects onto their correct
targets.

Like to know more about creating Drag and Drop interactions?
Drag and drop is in fact a huge topic on its own. So in order to keep this book about
advanced actions within a reasonable size we won’t be delving deeply into drag and
drop interactions here. However, stay tuned! I have another e-book all about drag and
drop in planning stages. Contact me if you’d like to register your interest in that book.

How to decide which objects and events to use
Now that you know about most of the available events, perhaps the big question in your mind is: “With
a dozen or more to choose from, how will I know which event to use and when?”

Unfortunately this requires one of those maddening “it depends” answers. Which event you use in a
given situation depends on two main factors:

1. What specific results are trying to achieve with your interaction design?

2. What kind of objects do you need to use to achieve that result? (This is because, as you
saw above, different objects offer different run-time events.)

Event scenarios
Perhaps this whole event decision-making process is best explained by considering some examples
of typical e-learning scenarios for which you need to create interactive solutions.

Let’s say you need to trigger an action when…

…the right thing gets clicked
This is easy enough to achieve using a click box, button, Smart Shape or interactive widget.
So, you can use the On Success event of those objects to execute a required action.

…the wrong thing gets clicked
You can use a button or click box set to only one allowed attempt, and use the On Last
Attempt event. When the user clicks anywhere outside the hit area, they’ve immediately used up
all allowed attempts and this will execute the action you specify.

But what if you need to allow multiple attempts on the correct area (perhaps because the user
needs to click something repeatedly) but immediately detect any clicks outside this hit area? In
that case you can set up a click box on a layer underneath the button and have the hit area of the
click box cover the slide. The click box’s On Success event can then be used to trigger an
action in response to this ‘failure’. (Since the correct button object is on a higher slide layer, if the
user clicks the button, its hit area will register the hit instead of the click box underneath.)

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 31 of 195 Date of Issue: 11 December 2013

http://www.infosemantics.com.au/contact

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

See also my clarification of what Captivate really means by the term ‘Infinite Attempts’.

…the participant enters a correct answer into a text field
Use a Text-entry Box object, turn on Validation and specify one or more correct answers.
When the user clicks the TEB Submit button or hits ENTER on the keyboard, Cp will evaluate
the data found in the entry field to see if it matches any of the specified correct answers. If it
does, then an On Success event is registered.

You can also use the Short Answer or Fill-in-the-blanks quiz question types to check user
input for correct answers. However, there are some special wrinkles to be aware of with quiz
questions. See the scenarios below about triggering actions when the participant answers a
question correctly or fails to answer correctly.

…the participant rolls their mouse cursor over an object
Triggering actions from mouseover events in Captivate is not currently as easy as it should be.
The only native Captivate object currently capable of registering rollover events is the Rollover
Slidelet with its On Rollover event. (Captivate’s Rollover Caption and Rollover Image objects
are not interactive and therefore cannot trigger actions.) However, as I’ve already mentioned, I
don’t recommend using slidelets for various reasons.

An alternative solution is the Infosemantics Event Handler widget. It enables you to turn any
Captivate object into an interactive object that can trigger events on Roll Over and Roll Out (as
well as several other mouse events). However, the slidelet object and the Event Handler widget
are both incompatible with HTML5 output at this time.

…the participant moves their mouse cursor away from an object
Captivate has no native object that is designed to register events on mouse out or rollout. Again,
the only alternative solution is the Infosemantics Event Handler widget because it has a Roll Out
event.

…the participant drags an object somewhere
This one should be obvious. You need to use the On Success or On Last Attempt events of
either Captivate’s native drag and drop functionality, or a drag and drop widget.

…as soon as a slide is played
In this scenario your best option is to use the On Enter slide event. The On Exit event of the
previous slide is not a good choice in this situation because it only gets fired when the final frame
of the slide is reached. That event may not fire in some cases, for example, if the user clicks
something that jumps them to a different slide. Therefore, using the On Enter event of the slide
where you want something to happen is a better choice because it will always occur no matter
how the slide was reached.

I use lots of On Slide Enter events in my projects for setting up slides that need to respond to
actions the user may have taken elsewhere in the course. For example, later I’ll show you how
to set up a main menu slide with objects that change state to indicate which parts of the e-
learning module the learner has not attempted as yet, which parts have been attempted but not
completed, and which parts have been successfully completed. We’ll use the On Enter slide
event in another example that replicates a dynamic drop-down menu in a software simulation.

…as soon as a slide is completed
This one is more difficult than it appears. It is certainly one situation where you could consider
using the slide’s On Exit event. However, in order to be certain the slide is played all the way to

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 32 of 195 Date of Issue: 11 December 2013

http://www.infosemantics.com.au/adobe-captivate-widgets/event-handler-interactive
http://www.infosemantics.com.au/adobe-captivate-widgets/event-handler-interactive

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

the end and the event is fired, you would need to disable any other means of navigation away
from the slide. That could require disabling the playbar and TOC (if your project has them).

Another way to achieve this goal could be to deliberately provide an interactive object that the
user must click to progress further. But again, in order to be certain that the event is fired when
the slide is completed you need to have the clickable object only appear after the user has
viewed all content and also make it impossible for the learner to navigate away from the slide by
any other means.

Sadly, there is currently no On Focus Lost event for slides. In view of the difficulties attached to
reliably ensuring a slide is completely viewed, I tend to avoid building interactions that require
this.

…the participant answers a quiz question slide correctly
Use the On Success event of the quiz question. However, this may not work exactly the way
you expect it to. You need to be aware of a couple of subtleties that apply to quiz questions:

 If you have feedback captions turned on for the quiz slide, then the On Success event only
fires AFTER you dismiss the feedback caption by clicking again somewhere on the slide.

 If you have feedback captions turned off, then the On Success event fires as soon as you
select a correct answer and click the Submit button.

…the participant fails to answer a question slide correctly
Use the On Last Attempt event of the quiz question. As with the previous example above about
correct answers in quiz questions, there are some subtleties to be aware of here:

 Firstly, if you have allowed infinite attempts on the quiz question, then the On Last Attempt
event will never fire, because as far as Captivate is concerned the user can never fail this
question. See my clarification of the meaning of the term ‘Infinite Attempts’.

 Secondly, if you have allowed a specific multiple number attempts on the quiz question (e.g.
2, 3, 4, etc), then the On Last Attempt will only fire when the user has failed to select a
correct answer and there are no more attempts allowed.

 Lastly, the On Last Attempt event will only fire AFTER you dismiss any feedback captions
present on the slide. If there are no feedback captions to dismiss, and all other check-points
mentioned above have been passed, then the On Last Attempt event will fire.

So as you can see, using the On Last Attempt event in Captivate is not quite the same as
saying you want something to happen when the learner gets the question wrong.

…the participant passes the quiz
Use the On Success event of the quiz. This event is closely related to the Quiz Results slide.
But as we found with quiz question slide events, there are also some complexities here as well.
Pay close attention to the following explanation:

 If the Quiz Results slide is hidden, then the On Success event of the quiz fires when the
participant has achieved a passing score and passes beyond the final quiz slide.

 If the Quiz Results slide is showing (i.e. not hidden), then the quiz On Success event fires
when the participant has achieved a passing score and clicks the Continue button on the
Quiz Results slide and allows it to play all the way to the end. Please note the final part of
that last sentence.

It seems that the On Success event for a quiz is only registered on the last frame of the
Quiz Results slide. If your user gets to the Quiz Results slide and then uses the TOC,

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 33 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

playbar, or Smart Shape button to jump to slides beyond the Quiz Results slide, then the
On Success event does not get fired and no event attached to it will be executed.

…the participant fails the quiz
And this one means you’ll be using (you guessed it) the On Last Attempt event of the quiz. The
number of allowed attempts on the quiz is set in Preferences > Quiz > Pass or Fail > If Failing
Grade. The normal default is one attempt, but you can set any number here all the way up to
Infinite Attempts. However, just as we found to be the case with interactive objects, if you set
attempts to Infinite, then the On Last Attempt event will never fire.

What if you need to trigger multiple actions from a single event?
In some cases you need to do a combination of several things as a result of a single event. This is
where the full power of advanced actions really becomes evident. But you need to walk before you
can run. For now, just focus on getting your head around the concept that every action must be
executed by some kind of run-time event. In later chapters we’ll be discussing how to use Standard
Actions and Conditional Actions to execute multiple events.

What ‘infinite attempts’ really means
Before we go any further we really need to clarify something about Captivate’s run-time events that
has many e-learning authors confused, and that is the true meaning of the term ‘infinite attempts’ as
it applies to interactive objects, quiz questions, and even the overall quiz itself.

The fact is that Captivate usually only ever gives you one SUCCESSFUL attempt at an activity, even
if you’ve set the interactivity to allow infinite attempts. So, Infinite Attempts should more accurately
be renamed as Infinite UNSUCCESSFUL Attempts, because that’s what it really means.

Let’s illustrate this concept by looking at a typical example using a click box object. As you can see
from the screenshot below, this click box is set to allow Infinite attempts and the On Success action
is to Go to the next slide. The Last Attempt event is disabled because you will never reach a last
attempt when set to Infinite.

If I interact with this slide at run-time and click inside the click box hit area once, it will execute the
assigned On Success action and jump to the next slide. So, the reality is that I only get one chance
to execute a successful action.

Conversely, if I click outside the hit area, no success or failure event is registered. I get no success
event because I didn’t click inside the hit area. And I get no failure event registered because I still
haven’t reached the last of my infinite attempts. I can click as many times as I want, as long as I don’t
click the hit area and register a success. I’m allowed infinite UNSUCCESSFUL attempts.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 34 of 195 Date of Issue: 11 December 2013

Advanced Actions for Adobe Captivate

How to take your Captivate e-learning to the next level

Setting up for failures (deliberately)
So what would I have to do in order to have the opportunity to trigger some action as a result of a user
failure? I would need to deselect Infinite attempts and set it to a lower limit that the user is more
likely to reach.

For example, if I wanted to execute one action when the user clicked inside the hit area (a success
action) and a different action as soon as the user click anywhere else, then I would need to set the
number of attempts to 1. This will then enable the user’s first attempt to also be their Last Attempt,
thereby triggering whatever action I configure for the Last Attempt event.

In the modified example shown below, I’ve created an advanced action (cleverly called
MyAdvancedAction) and configured this to be executed after my last allowed unsuccessful attempt.

Although I’ve used a click box object in these examples, the same basic principle applies for all
interactive objects, quiz questions, and even the overall quiz itself.

Why you need to know this
I’ve gone to some length explaining this popular misconception so that you don’t end up falling into
the same trap as many other Captivate authors who don’t get this subtlety. They can often be seen
posting on the Adobe Captivate Forum asking why their interactions won’t allow them to click
indefinitely on the same object to execute its assigned success action multiple times in a row. They
often proudly proclaim to have set the number of attempts to Infinite, but still only get a single
success action!

How to get around this interactive limitation
There are in fact a couple of ways to beat this single successful attempt limitation. One
method is called Micro Navigation and it was invented by the inimitable Lilybiri, Queen
of Advanced Actions herself. The other method involves use of widgets from
Infosemantics, particularly the Event Handler Interactive Widget. We will be discussing
both of these methods later in this e-book.

Document Version: 2013.12.11

© 2013 by Infosemantics Pty Ltd. ALL RIGHTS RESERVED Page 35 of 195 Date of Issue: 11 December 2013

http://forums.adobe.com/community/adobe_captivate
http://www.infosemantics.com.au/
http://www.infosemantics.com.au/adobe-captivate-widgets/event-handler-interactive

	Word Bookmarks
	Table_of_Contents
	Actions_Intro_SimpleActions
	Actions_Intro_StandardActions
	Actions_Intro_ConditionalActions
	Variables_ChapterStart
	Variables_SystemVariables
	Variables_UserVariables
	Variables_Create
	Variables_NameRules
	Variables_UserVariables_Edit
	Variables_UserVariables_Remove
	Variables_DisplayAtRuntime
	Variables_DisplayAtRuntime_MaxLength
	Variables_Boolean
	Events_ChapterStart
	Events_SlideEvents
	Events_InteractiveObjectEvents
	Events_InteractiveObjects_Buttons
	Events_InteractiveObjects_TextBtns
	Events_InteractiveObjects_TransparenBtns
	Events_InteractiveObjects_ImageBtns
	Events_InteractiveObjects_SmartShapeBtns
	Events_RolloverSlidelets
	Events_ChoosingEventsToUse
	Events_QuizQuestion_Correct
	Events_QuizQuestion_Incorrect
	Events_InfiniteAttempts
	Actions_Single_ChapterStart
	Actions_Single_Continue
	Actions_Single_GoToPreviousSlide
	Actions_Single_GoToNextSlide
	Actions_Single_GoToLastSlideVisited
	Actions_Single_ReturnToQuiz
	Actions_Single_JumpToSlide
	Actions_Single_OpenURLorFile
	Actions_Single_OpenOtherProject
	Actions_Single_SendEmail
	Actions_Single_ExecuteJavaScript
	Actions_Single_ExecuteAdvancedActions
	Actions_Single_ExecuteSharedAction
	Actions_Single_PlayAudio
	Actions_Single_StopTriggeredAudio
	Actions_Single_Show
	Actions_Single_Hide
	Actions_Single_Enable
	Actions_Single_Disable
	Actions_Single_Assign
	Actions_Single_Assign_VariablesLiterals
	Actions_Single_Increment
	Actions_Single_Decrement
	Actions_Single_Pause
	Actions_Single_Exit
	Actions_Single_ApplyEffect
	Actions_Single_Toggle
	Actions_Single_ShowTOC
	Actions_Single_ShowPlaybar
	Actions_Single_HideTOC
	Actions_Single_HidePlayBar
	Actions_Single_LockTOC
	Actions_Single_UnlockTOC
	Actions_Single_NoAction
	Debugging_ActionsMissingFromList
	Actions_Single_Expression
	Actions_StandardActions
	Actions_Standard_ChapterStart
	Actions_Standard_Create
	Actions_StandardActions_PausedPlayhead
	Actions_Standard_WhyNotUse
	Actions_ConditionalActions
	Actions_ConditionalActions_WhyPreferred
	Actions_ConditionalActions_Create
	Actions_ConditionalActions_DecisionBlock
	Actions_ConditionalActions_IfThenElse
	Actions_ConditionalActions_Operands
	Actions_ConditionalActions_CompOperators
	Actions_ConditionalActions_AndOr
	Actions_ConditionalActions_AllTrue
	Actions_ConditionalActions_AnyTrue
	Actions_ConditionalActions_Custom
	Actions_ConditionalActions_Preview
	Actions_SharedActions
	Actions_SharedActions_ChapterStart
	Actions_SharedActions_About
	Actions_SharedActions_Create
	Actions_SharedActions_Export
	Actions_SharedActions_Import
	Actions_SharedActions_CreateActionFrom
	Actions_SharedActions_ExecuteDirectly
	Actions_SharedActions_WorkInProgress
	Actions_SharedActions_Gotchas
	Actions_SharedActions_EditDelete
	Actions_SharedActions_NoVariableParams
	Actions_SharedActions_DuplicateVariables
	Actions_SharedActions_Parameters
	Actions_SharedActions_CopyPasteSlides
	Debugging_ChapterStart
	Debugging_Set_up_debug_environment
	Debugging_GeneralInfo
	Debugging_ActionsDoNotReleasePlayhead
	Debugging_InteractiveObjectsDoNotWork
	Debugging_ActionsRevertToContinue
	UserInput_ChapterStart
	UserInput_TEBs
	UserInput_TEBs_AssociatedVariables
	UserInput_TEBs_Validation
	PracticeProjects_ChapterStart
	PracticeProjects_Easy
	PracticeProjects_CreateDummyCondition
	PracticeProjects_ToggleActions
	PracticeProjects_ToggleActions_Single
	PracticeProjects_ToggleActions_Standard
	PracticeProjects_ToggleActions_StdExpres
	PracticeProjects_ToggleActions_Condition
	PracticeProjects_Toggle_ShowHideImage
	PracticeProjects_Toggle_TwoImages
	PracticeProjects_Toggle_CycleImageArray
	PracticeProjects_Toggle_ButtonText
	PracticeProjects_Navigation
	PracticeProjects_MenuSlide
	PracticeProjects_MenuSlide_Feedback
	PracticeProjects_Navigation_HideIfIncomp
	PracticeProjects_MenuSlide_FeedbackAdvan
	PracticeProjects_ReplaySlide
	PracticeProjects_CaptureDataMultipleTEBs
	PracticeProjects_ValidateNULLData
	PracticeProjects_Errors_HighlightFaults
	PracticeProjects_ValidateMultiCorrectAns
	PracticeProjects_NavigateIfValidateOK
	PracticeProjects_StandardizeMessageVars
	PracticeProjects_ConcatenateStringVars
	PracticeProjects_Dates
	PracticeProjects_Dates_DateFormUsability
	PracticeProjects_Dates_DateSysVars
	PracticeProjects_Dates_ShowModDuration
	PracticeProjects_CustomDateFormatVars
	Appendix_ReservedKeywords
	Appendix_KeystrokeShortcuts
	Appendix_SystemVariables
	Appendix_SysVars_cpCmndShowPlaybar
	Appendix_SysVars_cpInfoCurrentDate
	Appendix_SysVars_cpInfoCurrentDateString
	Appendix_SysVars_DateStringDDMMYYYY
	Appendix_SysVars_cpInfoCurrentDay
	Appendix_SysVars_cpInfoCurrentLocaleDate
	Appendix_SysVars_cpInfoCurrentMinutes
	Appendix_SysVars_cpInfoCurrentMonth
	Appendix_SysVars_cpInfoCurrentYear
	Appendix_SysVars_cpInfoFPS
	Appendix_SysVars_cpInfoFrameCount

